WaferBoard™ Rapid Prototyping
(Draft - for discussion purposes only)

1. Select components that are packaged in ball grid array, QFP, TSOP, etc.
2. Place the packaged components - FPGAs, ASICs, processors, memories, etc. – on WaferBoard™. Components that will be connected together are placed near each other.
3. Close the WaferBoard™ cover to press the components in place.
4. The WaferBoard™ maps the components and their contacts, and imports the map into the WaferConnect™ configuration software.
5. The WaferBoard™ map is then displayed for component identities to be confirmed and the interconnections to be specified by mouse or by importing a netlist.
6. The WaferConnect™ configuration software then programs the WaferBoard™ to set the specified interconnections. The prototype hardware is now ready to run, in minutes instead of months.

www.DreamWafer.com

© 2009 Gestion TechnoCap Inc.
WaferBoard™ Rapid Prototyping for Electronic Systems enhances creativity and invention and slashes prototyping costs, risks and time to market by allowing hardware from simple electronics to high-density electronics, micro-nano systems or system-on-chip ASICs to be prototyped in minutes.

A WaferBoard™ is a “waffle iron” for prototyping electronic systems. Simply place packaged components (“dough”) on the WaferBoard™ and close the cover. The WaferBoard™ then senses the component contacts and recognizes the components and intelligently interconnects them (“cooks them”). The prototype (“waffle”) is now ready to be brought up and run. WaferBoard™ prototyping can save the electronic systems development process weeks or months of time to market and tens to hundreds of thousands of dollars (or more).

In developing new technologies for micro-nano systems, displays, sensors, telecommunication devices, multimedia and computing systems; diverse components ranging from processors and memories, ASICs and FPGAs, analog and RF, photonics and sensors, and MEMs and microfluidics are interconnected to form complex systems. Whether these electronics are the new technology or whether they merely support the new technology, The WaferBoard™ makes prototyping such systems simple by providing what these diverse components all need: power, ground and communications with each other and with the external world.

Compared to traditional development, the WaferBoard™ approach is simple:

1. Select components that are packaged in ball grid array, QFP, TSOP, etc.
2. Place the packaged components - FPGAs, ASICs, processors, memories, etc. – on WaferBoard™, components that will be connected together are placed near each other.
3. Close the WaferBoard™ cover to press the components in place.
4. The WaferBoard™ maps the components and their contacts, and imports the map into the WaferConnect™ configuration software.
5. The WaferBoard™ map is then displayed for component identities to be confirmed and the interconnections to be specified by mouse or by importing a netlist.
6. The WaferConnect™ configuration software then programs the WaferBoard™ to set the specified interconnections. The prototype hardware is now ready to run.

The WaferBoard™ establishes the specified control and data connections between components, and supplies power to specified component contacts at controlled voltages. WaferBoard™ built-in PCI-express and USB provide links to the external world. User-specific connections can also be added; non-digital connections, such as analog sensors, antennae and micro-fluidics, are not programmable but can be made directly to components if needed.

Hardware bring-up begins immediately. Debugging is simplified – any signals can be cloned at any point, and copies routed to software or to WaferBoard™ scope or logic analyzer connectors at any time. Software integration starts early, and with a system that uses the actual components rather than emulation.

1 For SoC, where emulation is desired, partitioning is simplified by every FPGA connection being available where it is most useful. Complex hard IP (e.g. processors) can be used in component form when available to further speed prototype performance and peripherals can be added to replicate the SoC's environment. Thus software testing can proceed on a complete near-real-time prototype, allowing increased coverage while speeding time-to-market.

www.DreamWafer.com

© 2009 Gestion TechnoCap Inc.
WaferBoard™ for Researchers

(Draft - for discussion purposes only)

Imagine it, then WaferBoard™ it. The WaferBoard™ enhances creativity by removing obstacles to experimental and iterative development. Hand-placing packaged components is sufficient because WaferBoard™ detects and adapts to component position, connections can be made or removed at any time without worrying about signal integrity. Components are added, moved or replaced as needed.

1. Why a WaferBoard™ is essential for research

The WaferBoard™ is essential for experimentation because it lets “what if” questions be answered quickly. Whether the system being prototyped is the research or whether it supports the research, the ability to rapidly and reprogrammably customize it to research needs speeds up the research process.

- The FPGAs can be reprogrammed.
- Custom ASICs can be added and integrated.
- Commercial ASICs can be added and integrated.
- All interconnections between FPGAs, memories, commercial and custom ASICs are completely reprogrammable at any time.

2. What do I the researcher do with it?

Many systems simply require selecting the right FPGA-to-memory and FPGA-to-FPGA connections for the ‘hardware’, compiling C code to FPGA firmware, and the system is ready to run. Right out of the box WaferBoard™ is an FPGA-based development platform on steroids!

- Select components that are packaged in ball grid array, QFP, TSOP, etc.
- Programmable FPGA-to-memory connectivity allows custom algorithms to be prototyped.
- Custom FPGA accelerators can give super-computer performance on a desk-top platform.

Other research systems are centered on custom ASICs, but need supporting logic and memories.

- The WaferBoard™ Central User Area allows high-pin-count customer or commercial to be densely inter-connected with the supplied FPGAs and memories.
- The WaferBoard™ User Areas allow custom PACKAGED chip sets to be added and reprogrammably interconnected to each other and to the supplied FPGAs and memories.

Testing of experimental systems is enhanced, too; the WaferBoard™ provides the ability to clone any signals at any point and display them using its virtual logic analyzer software.

3. What tools do I need?

Only a desk-top or lap-top computer and your research goals!

- The WaferBoard™ WaferConnect™ software lets all system interconnections be specified through its intuitive graphical interface, supplied libraries provide the basic memory controllers and customizable FPGA-to-FPGA connections, the CMC-supplied FPGA tools allow compiling RTL, Verilog, VHDL or C algorithms to FPGA firmware.
- If you already have system design tools, the WaferConnect™ software will import netlist files from PCB tools, configuration bit-streams from FPGA tools, ASIC descriptions from parts libraries, and will export cloned signals to logic analyzer connectors.

www.DreamWafer.com

© 2009 Gestion TechnoCap Inc.
WaferBoard™ for FPGAs

(Draft - for discussion purposes only)

WaferBoard™ FPGA Platform (cover not shown)

1. **User Area** is for packaged components of system being prototyped
 - The larger user areas are on the sides for easy access and support complex custom packaged chip sets and peripherals for the system being prototyped.

2. **Central User Area** is for packaged components needing the fastest access to FPGAs e.g. custom ASICs
 - If the prototype needs specialized chips, the central user area is ideal for a high-performance user ASIC, being close to all the large FPGAs and a variety of fast memories (with bulk RAM available further away).

3. **Flex PCB Cable** (optional) is greater than 100 connections per cm²
 - ADC/DAC, custom I/O, optics, etc.

4. **Support PCB Underside** includes Control CPU, PCI-e Switch, Flash memory and DIMMS

Any chip can be reprogrammably connected to any other chips; this flexibility makes the FPGAs and memories by themselves sufficient for prototyping many systems.

www.DreamWafer.com
<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer</td>
<td>1</td>
</tr>
<tr>
<td>PowerBlocks</td>
<td>21</td>
</tr>
<tr>
<td>BackPlate</td>
<td>1</td>
</tr>
<tr>
<td>Reticles</td>
<td>76</td>
</tr>
<tr>
<td>Through Silicon Vias TSVs</td>
<td>4,864</td>
</tr>
<tr>
<td>Solder Bumps</td>
<td>77,824</td>
</tr>
<tr>
<td>Nanopads</td>
<td>1,245,184</td>
</tr>
<tr>
<td>Z-axis Fibers</td>
<td>80,000,000</td>
</tr>
<tr>
<td>User Component Distinct Connection Points</td>
<td>155,648</td>
</tr>
<tr>
<td>Millimeter-scale connections</td>
<td>1,477,120</td>
</tr>
<tr>
<td>Meters of millimeter-scale connections</td>
<td>9,850</td>
</tr>
<tr>
<td>Sub-millimeter connections</td>
<td>1,710,848</td>
</tr>
<tr>
<td>Meters of sub-millimeter connections</td>
<td>510</td>
</tr>
<tr>
<td>Bits of configuration memory</td>
<td>22,750,000</td>
</tr>
<tr>
<td>Microns of gate width in programmable power transistors</td>
<td>1,900,000,000</td>
</tr>
</tbody>
</table>

The WaferIC™ is a wafer scale FPGA

One WaferIC™ includes:

- **1 Wafer** which is a single chip of 24,500 mm²
- **1 Z-axis Film**
- **21 PowerBlocks** active (plus 4 filler triangles in corners)
- **1 BackPlate**
- **76 Reticles** active (plus 8 blank partial reticles in corners)
- **4,864 Through Silicon Vias TSVs** (8x8=64 per reticle)
- **77,824 Solder Bumps** (4x4=16 per TSV)
- **1,245,184 Nanopads** (128x128=16,384 per reticle)
- **80,000,000 Z-axis Fibers** (8x8=64 per nanopad)
- **155,648 User Component Distinct Connection Points** (two per 4x4=16 nanopads)
- **1,477,120 Millimeter-scale programmable interconnection segments** (20 per 4x4 nanopads, minus edges)
- **9,850 Meters of millimeter-scale programmable interconnection segments**
- **1,710,848 Sub-millimeter programmable interconnect segments** (22 per 4x4 nanopads, minus edges)
- **510 Meters of sub-millimeter programmable interconnection segments**
- **22,750,000 Bits of configuration memory**
- **1,900,000,000 Microns of gate width in programmable power transistors**
Technical Information

Programmable Area: 8” (200 mm) wafer
Connections:
- Four USB, two logic analyzer, two 10/100/GigE
- Four 10GigE cages for high-speed I/O including linking arrays of WaferBoards™
- Two PCI-e x16 slots for I/O, Graphics, etc.
WaferIC NanoPad™ density: 5000/cm²
Minimum Component Contact pitch: 0.5 mm
Minimum Component Contact diameter: 0.2 mm
Embedded repeater spacing: 2 mm
- Prevents cross-talk and attenuation
Maximum Signal Rate (SDR): 300 MHz (TBC)
Maximum Signal Rate (DDR): 500 Mb/s/contact (TBC)
Maximum Signal Rate (Differential): TBD

Signal Latency: 0.2 nanoseconds/mm
Maximum current per contact: 400 mA
- Use adapter if more current needed
Maximum voltage supplied: 3.3V
- Higher-voltage feeds can be added if needed
Maximum Total Power: 300W)
Decoupling Capacitance: 350 µF/cm²
- An adapter can add more decoupling if needed
Maximum Pressure Applied: 100 PSI (700 Kilopascals)
Maximum Ambient Temperature: TBD
Maximum Ambient Humidity: TBD
Maximum Acceleration: 5G (TBC)
Platform size: 314 mm x 250 mm x 60 mm (TBC)
Platform Weight (full wafer): 40 Nt (9 lbs) (TBC)

www.DreamWafer.com

© 2009 Gestion TechnoCap Inc.